```
\(S=1.085\)
4180 reflections
132 parameters
H-atom parameters not
    refined
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0395 P)^{2}\right.\)
        \(+0.7536 P]\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
```

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C) Absolute structure:

Flack (1983)
Flack parameter $=-0.01(4)$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Pd} 1-\mathrm{N} 1$	$2.0872(19)$	$\mathrm{O} 2-\mathrm{Cl}$	$1.304(4)$
$\mathrm{Pd} 1-\mathrm{Cl1}$	$2.2991(6)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.213(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.484(3)$	$\mathrm{O} 4-\mathrm{C} 3$	$1.310(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.485(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.523(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.498(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.500(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.190(4)$		
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl1}$	$91.70(6)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Pd} 1$	$105.60(14)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$109.47(19)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Pd} 1$	$112.74(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$112.77(19)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Pd} 1$	$105.91(14)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	$110.3(2)$		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$-\mathrm{H} \cdots A$	$D-\mathbf{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4C $\cdots \mathrm{O} 2 W$	0.82	1.79	$2.602(5)$	170
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{Cl1}$	1.03	2.23	$3.133(4)$	146
$\mathrm{O} 3 W-\mathrm{H} 2 \mathrm{O} 3 \cdots \mathrm{O} 1$	0.86	2.15	$2.858(6)$	139
$\mathrm{O} 2-\mathrm{H} 2 C \cdots \mathrm{O} 1 W^{i}$	0.82	1.83	$2.646(6)$	176
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 3 W^{\text {ii }}$	1.09	2.55	$3.539(8)$	151
$\mathrm{O} 2 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 2 W^{\text {iii }}$	0.86	2.63	$3.338(7)$	140

Symmetry codes: (i) $x-1, y, z$; (ii) $\frac{1}{2}-y, \frac{1}{2}+x, \frac{1}{4}+z$; (iii) $1-y, 1-x, \frac{1}{2}-z$.
H atoms on oxygen were located from difference maps, while those on carbon were placed in calculated positions, with C H distances of $0.97 \AA$. $U_{\text {iso }}$ values for the H atoms on C 2 and C 4 were assigned as $1.2 U_{\text {eq }}$ of the C atom, while those on C 5 and the O atoms were assigned as $1.5 U_{\text {eq }}$ of the attached atom. H atoms were not refined.

Data collection: SMART (Siemens, 1996a). Cell refinement: SAINT (Siemens, 1996b). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

LZ thanks the National Natural Science Foundation of China (grant Nos. 2987017 and 29823001) and the Natural Science Foundation of Jiangsu Province (grant No. BK97015) for financial support. SSSR thanks Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship, and HKF would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1173). Services for accessing these data are described at the back of the journal.

References

Busch, D. H. \& Bailar, J. C. (1956). J. Am. Chem. Soc. 78, 716-719. Chen, X., Luo, X., Song, Y., Zhou, S. \& Zhu, L. (1998). Polyhedron, 17, 2271-2278.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Robinson, D. J. \& Kennard, C. H. L. (1967). J. Chem. Soc. Chem. Commun. pp. 1236-1237.
Robinson, D. J. \& Kennard, C. H. L. (1970). J. Chem. Soc. A, pp. 1008-1012.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick. G. M. (1997). SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996a). SMART Softhare Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). SAINT Software Reference Manual. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Whalen, J. T., Chang, S.-C. \& Morman, R. E. (1996). Acta Cryst. C52, 297-300.

Acta Cryst. (1999). C55, 1222-1224

\{4,4'-Dimethyl-6'-morpholiniomethyl-6-morpholinomethyl-2,2'-[1,2-ethanediylbis(iminomethylene)]diphenolato\} copper(II) perchlorate dihydrate

S. Shanmuga Sundara Raj, ${ }^{a}$ D. Velmurugan, ${ }^{b}$ K. Gunasekaran, ${ }^{b}$ Hoong-Kun Fun, ${ }^{a}$ J. Manonmani ${ }^{c}$ and M. Kandaswamy ${ }^{c}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{b}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and 'Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: velu@cyberspace. org
(Received 25 January 1999; accepted 26 April 1999)

Abstract

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right] \mathrm{ClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the copper ion is in a square-pyramidal environment, with the basal plane being defined by the two phenoxy O and the two amino N atoms. Both morpholino rings are in chair conformations. The molecules are packed in the crystal with a three-dimensional hydrogenbonding network involving the water molecules and the perchlorate ion.

Comment

The study of metal complexes is focused very much towards the field of biomimicry where they can be used as model compounds for biological metallo compounds like proteins and enzymes (Suzuki et al., 1984).

In the title complex, (I), the copper ion is coordinated by two phenoxy O and two amine N atoms in a
square-pyramidal arrangement. The fifth coordination site is occupied by a water molecule [Cucdots O 2 W 2.475 (3) \AA]. The distance of the Cu atom from the coordination plane is 0.084 (1) \AA and the water O 2 W atom is 2.507 (2) \AA from this plane.

(I)

The two amine groups are in a 'gauche' conformation, with an $\mathrm{N} 2-\mathrm{C} 14-\mathrm{C} 15-\mathrm{N} 3$ torsion angle of $55.6(3)^{\circ}$ (Nasipuri, 1991). The bond distances around the N atom of the protonated morpholino ring are different from those around the unprotonated morpholino N atom. The perchlorate ion has a tetrahedral geometry, with the average bond length and angle being 1.416 (3) A and 109.5 (3) ${ }^{\circ}$, respectively.

Both morpholino rings are in a chair conformation. It is worth noticing that protonation at the N 4 morpholine

Fig. 1. ORTEP plot (Sheldrick, 1997) at 50% probability of the structure of (I) with the atom-numbering scheme. The perchlorate anion, the hydrate molecules and the H atoms have been omitted for clarity.
atom has only a small influence on the pyramidalization of nitrogen, the sum of the bond angles formed by the non -H atoms being 329.1° at Nl and 333.2° at N4. The same can be said for the values of the total puckering amplitudes (Cremer \& Pople, 1975), which are 0.563 (4) \AA for the N 1 -morpholine ring and 0.575 (3) \AA for the N4-morpholine ring. The values of the dihedral angles formed by the best planes through the morpholine and the attached phenyl rings are $65.2(1)^{\circ}$ for the N1-morpholine ring and $81.0(1)^{\circ}$ for the N 4 -morpholine ring.

The water molecules and perchlorate ion stabilize the crystal packing. As can be seen from Table 2, one of the water molecules ($\mathrm{Ol} W$) forms three hydrogen bonds: two intramolecular ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) and one intermolecular. The other water molecule (O 2 W) is involved in one intramolecular ($\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$) hydrogen bond with the complex and one intermolecular (O $\mathrm{H} \cdots \mathrm{O}$) hydrogen bond with the perchlorate ion.

Experimental

The ligand was prepared by the reduction of N, N^{\prime}-bis[2-hy-droxy-5-methyl-3-(morpholinomethyl)benzyl]ethylenediamine ($0.5 \mathrm{~g}, 1 \mathrm{mmol}$) (Karunakaran \& Kandaswamy, 1995) with sodium borohydride ($0.15 \mathrm{~g}, 4 \mathrm{mmol}$) in ethanol. The ligand ($0.5 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in methanol and added to a methanolic solution of copper acetate monohydrate $(0.2 \mathrm{~g}$, $1 \mathrm{mmol})$. The resulting solution was refluxed on a water bath for 2 h and filtered while hot. Black crystals formed on cooling the solution to room temperature (273 K). The crystals were filtered and dried in a vacuum.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right] \mathrm{ClO}_{4}$--

$$
2 \mathrm{H}_{2} \mathrm{O}
$$

$M_{r}=696.67$
Monoclinic
$P 2_{1}$
$a=10.546(1) \AA$
$b=14.229$ (1) \AA
$c=10.807(1) \AA$
$\beta=99.75(1)^{\circ}$
$V=1598.3(2) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.448 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
empirical via ψ scans
(Siemens, 1994)
$T_{\text {min }}=0.573, T_{\text {max }}=0.768$
4742 measured reflections
3818 independent reflections (plus 275 Friedel-related reflections)

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 38 reflections
$\theta=5.44-12.51^{\circ}$
$\mu=0.827 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular block
$0.78 \times 0.60 \times 0.38 \mathrm{~mm}$
Dark green

3821 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-1 \rightarrow 13$
$k=-1 \rightarrow 18$
$l=-14 \rightarrow 13$
3 standard reflections every 97 reflections intensity decay: $<3 \%$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.074$
$S=1.017$
4093 reflections
428 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0482 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.211 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.207 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0020 (9)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)
Flack parameter $=$ -0.005 (9)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O} 1$	$1.918(2)$	$\mathrm{Cl}-\mathrm{O} 8$	$1.403(3)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.924(2)$	$\mathrm{Cl}-\mathrm{O} 7$	$1.416(3)$
$\mathrm{Cu}-\mathrm{N} 3$	$2.010(2)$	$\mathrm{Cl}-\mathrm{O} 5$	$1.421(4)$
$\mathrm{Cu}-\mathrm{N} 2$	$2.023(2)$	$\mathrm{Cl}-\mathrm{O} 6$	$1.423(5)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$90.38(8)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2$	$91.67(9)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3$	$172.59(10)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	$175.89(10)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 3$	$93.21(8)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 2$	$84.35(9)$

Table 2. Hydrogen-bonding geometry $\left(A^{\circ},{ }^{\circ}\right)$

$D-\mathrm{H} \cdot \cdots A$	$D-\mathrm{H}$	H \cdots A	D. . A	$D-\mathrm{H} \cdots A$
O1W-H1W1 . . O 3	0.91 (3)	2.03 (4)	2.885 (4)	156(4)
O2W-H2W2 ${ }^{\text {W }}$ - 1	0.88 (3)	2.07 (3)	2.945 (4)	169 (3)
N3-H1N3..O7	0.87 (3)	2.42 (3)	3.203 (5)	150 (3)
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O}^{\text {i }}$	0.89 (2)	2.14 (2)	2.958 (3)	154 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\mathrm{ii}}$	0.90 (4)	2.05 (4)	2.927 (5)	165 (4)
N4-H1N4...Ol $\mathrm{W}^{\text {iii }}$	0.88 (3)	1.90 (3)	2.728 (3)	156 (3)
$\mathrm{O} 1 W-\mathrm{H} 2 \mathrm{Wl} \cdots \mathrm{Ol}^{\text {iv }}$	0.87 (4)	1.84 (3)	2.652 (3)	156 (4)

Symmetry codes: (i) $x, y, z-1$; (ii) $1-x, \frac{1}{2}+y,-z$; (iii) $-x, y-\frac{1}{2},-z$; (iv) $-x, \frac{1}{2}+y,-z$.

The water H atoms and those attached to N atoms were localized in difference maps, while all other H atoms were placed in calculated positions riding on their attached C atoms.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. SSSR thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

[^0]Nasipuri, D. (1991). Stereochemistry of Organic Compounds, pp. 208209. Lile Eastern Ltd.

Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Suzuki, M., Hagimekamatomi, S. \& Murase, K. (1984). Bull. Chem. Soc. Jpn. 57, 36-42.

Acta Cryst. (1999). C55, 1224-1226

An exo-polyhedral bicyclic 11-vertex closo-ruthenaborane: $\left[\left(\mathrm{PPh}_{3}\right)\left(\mathbf{C H}_{3} \mathbf{C O S}\right)_{2^{-}}\right.$ $\mathrm{RuB}_{10} \mathrm{H}_{8}$]

Yong Nie, ${ }^{a}$ Chun-Hua Hu, ${ }^{a}$ Jie Sun, ${ }^{b}$ Ruo-Shui Jin ${ }^{c}$ and Pei-Ju Zheng ${ }^{a}$
${ }^{a}$ Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China, ${ }^{b}$ Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China, and 'Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China. E-mail: pjzheng@fudan. edu.cn

(Received 14 January 1999: accepted 29 March 1999)

Abstract

The title compound, 1,2:1,3-bis(μ-thioacetato- $S: O$)-1-(triphenylphosphine- P)-1-ruthena-closo-undecaborane, $\left[\mathrm{Ru}\left(\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~B}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, contains an 11-vertex closo-type $C_{2 v} \quad\left\{\mathrm{RuB}_{10}\right\}$ cluster and two symmetric exo-polyhedral five-membered $\mathrm{Ru}-\mathrm{S}-\mathrm{C}-\mathrm{O}-\mathrm{B}$ rings. The $\mathrm{Ru}-\mathrm{S}$ bond lengths are 2.443 (2) and 2.445 (2) \AA, and the $R u-B$ bond lengths are in the range 2.036 (9)-2.393 (9) \AA.

Comment

There has been considerable interest in the incidence of cyclic exo-polyhedral metal-to-cluster linkages in polyhedral metalloborane compounds (Kennedy, 1984, 1986; Barton \& Srivastava, 1995). However, such ruthenaboranes have not been fully explored. Only six complexes representative of two types of rings, to our knowledge, are known to date. It has been reported that the reaction of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and $\left[\mathrm{B}_{10} \mathrm{H}_{10}\right]^{2-}$ with MeCOOH affords two novel ruthenaboranes with one and two five-membered $\mathrm{Ru}-\mathrm{O}-\mathrm{C}(\mathrm{Me})-\mathrm{O}-\mathrm{B}$ rings (Fontaine et al., 1987). When the same reaction was carried out in the presence of PhCOOH or $o-\mathrm{PhNHC}_{6} \mathrm{H}_{4}-$ COOH instead of MeCOOH , three 11-vertex closo-type ruthenaborane compounds, all with one or two fivemembered $\mathrm{Ru}-\mathrm{O}-\mathrm{C}(\mathrm{Ar})-\mathrm{O}-\mathrm{B}$ rings (where Ar is

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1413). Services for accessing these data are described at the back of the journal.

 ## References

 Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
 Karunakaran, S. \& Kandaswamy, M. (1995). J. Chem. Soc. Dalton Trans. pp. 1851-1855.
 Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

